La provincia de Granada está en Fitur.

'Protones y neutrones enamorados', un fenómeno crucial para la evolución de las estrellas investigado en la UGR

E+I+D+i - E.P./IndeGranada - Lunes, 8 de Enero de 2018
De izquierda a derecha, Enrique Ruiz Arriola, Ignacio Ruiz Simó y José Enrique Amaro Soriano.
ugrdivulga
De izquierda a derecha, Enrique Ruiz Arriola, Ignacio Ruiz Simó y José Enrique Amaro Soriano.

Investigadores de la Universidad de Granada han desarrollado un método eficiente para determinar las rápidas vibraciones cuánticas de los protones y neutrones en el interior del núcleo atómico, denominadas correlaciones de corto alcance. Este trabajo tiene importantes repercusiones en astrofísica, ya que las correlaciones de corto alcance entre protones y neutrones pueden tener un efecto crucial en la evolución de las estrellas.

Este fenómeno ha sido popularmente bautizado como "protones y neutrones enamorados" por los investigadores del Grupo de Física Hadrónica del Instituto Carlos I de Física Teórica y Computacional de la Universidad de Granada que han estado al frente del proyecto junto al laboratorio Lawrence Livermore de California (Estados Unidos).

Según explica uno de ellos, José Enrique Amaro Soriano, catedrático del departamento de Física Atómica, Molecular y Nuclear de la UGR, "en astrofísica es crucial conocer la ecuación de estado de la materia -la energía en función de la densidad- para las altas densidades existentes en el interior de las estrellas de neutrones y otros objetos estelares densos. A tan altas densidades las correlaciones de corto alcance entre protones y neutrones pueden tener un efecto crucial en la evolución de la estrella".

Las repercusiones en física nuclear también son múltiples. El estudio de las correlaciones de corto alcance permite obtener información directa acerca de la fuerza nuclear a cortas distancias, que no se conoce en detalle. Ya se han hecho experimentos en el acelerador JLAB en Virginia (Estados Unidos) para observar estos protones de alta velocidad, según detalla en una nota la Universidad de Granada.

El efecto está relacionado, por otra parte, con el entrelazamiento cuántico, base de una tecnología en auge como es la computación cuántica. "Si alguna vez se desarrolla un ordenador cuántico nuclear, habría que tener en cuenta el efecto de las correlaciones de corto alcance", afirma el catedrático José Enrique Amaro Soriano.

Los núcleos atómicos son los componentes fundamentales de la materia. Son objetos diminutos conteniendo un conglomerado de partículas, protones y neutrones, fuertemente unidas. La fuerza de unión es tan potente que para despegar un protón o un neutrón se deberían alcanzar temperaturas de millones de grados, típicas del interior de una estrella masiva.

Alta velocidad

Estas partículas, denominadas nucleones, se encuentran en movimiento en el núcleo, con velocidades que normalmente no llegan a 70.000 kilómetros por segundo, menores que el 25 por ciento de la velocidad de la luz. Todo ello de acuerdo con el principio de incertidumbre de la física cuántica, ya que las velocidades de las partículas confinadas aumentan al disminuir el tamaño de la región de confinamiento.

Debido a la fuerza nuclear, dos nucleones pueden encontrarse de frente y chocar de manera violenta, adquiriendo velocidades muy superiores, que pueden alcanzar el 70 por ciento de la velocidad de la luz, casi triplicando su velocidad máxima. José Enrique Amaro realiza la siguiente comparativa: "este hecho puede parecer sorprendente si pensamos en la siguiente analogía, sería como si dos coches a 100 km/h chocaran de frente y, durante el choque, sus velocidades aumentaran hasta 300 km/h".

El trabajo, en el que han participado Ignacio Ruiz Simó, José Enrique Amaro Soriano, Enrique Ruiz Arriola y Rodrigo Navarro Pérez, ha sido publicado en la prestigiosa revista especializada Physical Review C de la Sociedad Americana de Física.

En este proyecto se ha utilizado la representación de la fuerza nuclear más precisa hasta la fecha, que se desarrolló recientemente dentro del mismo grupo de investigación de la UGR. La interacción nuclear de Granada ha permitido resolver de forma novedosa, y con un método muy sencillo, la ecuación que describe el choque de dos nucleones en el interior de un núcleo, que fue propuesta por los físicos H. Bethe y J. Goldstone en los años 50.